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Abstract:

In the present research article, the transient radiative free convective hydromagnetic
Casson fluid flow past a vertical cylinder with entropy heat generation is analysed numerically.
The mathematical model of this problem is constituted by highly time-dependent non-linear
coupled equations and they are resolved by an efficient unconditionally stable implicit scheme.
The time histories of average values of momentum and heat transport coefficients, entropy
generation and Bejan number, as well as the steady-state flow variables are discussed for
several values of non-dimensional parameters arising in the flow equations. The results indicate
that entropy generation parameter and Bejan number upsurges with rising values of Casson
fluid parameter, viscous dissipation parameter, group parameter and Grashof number, whereas
the reverse trend is observed for radiation and magnetic parameters. Also, it is viewed that the
variation of entropy and Bejan lines occur in the proximity of the hot cylindrical wall only.
Finally, a comparison between the Casson and Newtonian fluid is made based on the obtained
numerical results of the present study and this has important implications in industrial thermal
materials processing operations.
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1. Introduction

A flow of viscous fluids subjected to the unsteady natural convection over a cylinder
has a broad range of applications such as solar energy collectors, electromagnetics,
transformers, nuclear reactors, wind energy, electrical heaters, oceanography, geomechanics
etc. One such important mathematical model of free convective fluid flow past a uniformly
heated vertical cylinder was analyzed by Sparrow and Gregg [1]. Lee et al. [2] studied the
similar problem with power-law variation along the thin vertical cylinder. Such studies on
rheological fluids are enviable for their growing importance in the science and engineering.
But a very few non-Newtonian fluid flow problems in fluid mechanics received attention,
because of their unique challenge to engineers, physicists, and mathematicians. Rani and Reddy
[3] examined the time-dependent free convection flow of the non-Newtonian fluid past a
cylinder with Dufour and Soret effects. Recently, Hirschhorn et al. [4] investigated the non-
Newtonian magnetohydrodynamic (MHD) flow past a plate with slip boundary conditions.

Honey, jelly, concentrated fruit juices, soup, human blood, tomato sauce, etc. in the
classification of polar fluid theories are under the category of Casson fluid, and this fluid fits
the rheological data better than the typical viscoelastic models of many materials. This fluid
defines as a shear thinning liquid which is assumed to have an infinite viscosity at zero rate of
shear, a yield stress below which no flow occurs and zero viscosity at an infinite rate of shear
[5]. Some researchers [6-7] studied the problem for Casson fluid flow with heat transfer past a
stretching surface/sheet under different conditions. Time-dependent Casson fluid over a cone
and plate under the effects of chemical reaction and radiation is studied by Mythili and Sivaraj
[8]. Das et al. [9] studied the time-dependent MHD Casson fluid flow over a plate with
chemical reaction and radiation. An MHD flow of Casson fluid over a sheet was investigated
analytically by Nadeem et al. [10]. In recent times, Raju et al. [11] analyzed the natural
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alloy nanoparticles.

Also, the laws of thermodynamics and Newton's 2nd law of motion are the basic
principles on which all the flow and heat transfer systems developed today. First law of
thermodynamics provides information about the energy of the system quantitatively. On the
other hand, the thermodynamics second law says that entire actuality processes are
irretrievable and it is a useful tool to examine the entropy generation to assess the
irreversibility in the system. Entropy production determines the irreversibility related to the
natural processes such as a counter flow heat exchanger for gas to gas applications [12].
Currently, entropy analyses are used as a powerful tool for the determination of which
procedure, system or installations are more effectual, and it has been the subject of various
interests in several areas comparable to turbo machinery, porous media, electric cooling, heat
transferring devices, and combustions. Few recent applications over entropy generation are
pseudo-optimization design process in solar heat exchangers [13], minimizing lost available
work during heat transfer processes [14] and multiphase flows [15]. The foremost of the
energy-related applications, for example, cooling of modern electronic systems, solar energy
collectors, and heat energy systems rely on entropy generation. Numerous studies [16-18]
were carried out upon entropy generation with several flow formations. Several researchers
studied the entropy generation concept related to the heat transfer problem for different
geometries, particularly on the cylinder. Omid Mahian et al. [19] examined the entropy
analysis between two vertical cylinders with different conditions in the presence of
MHD. Also, studies on entropy generation past a stretching cylinder can be found in
[20-22]. Bassam Abu-Hijleh et al. [23-25] analysed the entropy heat generation over a
horizontal cylinder. Few studies present in the literature on thermodynamic analysis of fluid
flow between rotating cylinders [26-28]. Recently, Jia Qing et al. [29] investigated the
entropy generation on MHD Casson fluid flow over a porous surface. In addition, they

have revealed the effect of entropy generation on nanofluid.
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Also, the MHD fluid flow with thermal radiation effect is an important study in fluid
dynamics due to its widespread applications in combustion, glass production, furnace design,
the design of high temperature gas cooled nuclear reactors, nuclear reactor safety, fluidized bed
heat exchanger, fire spreads, advanced energy conversion devices such as open cycle coal and
natural gas fired MHD, solar fans, solar collectors, natural convection in cavities, turbid water
bodies, photo chemical reactors and many others. To know this phenomenon, it is essential to
study the behavior of flow profiles with MHD and thermal radiation effects. Few references
related to the MHD and/or thermal radiative flows are listed here. Srinivas et al. [30]
investigated the magnetized non-Newtonian fluid flow between two vertical rotating cylinders.
They show that the external magnetic field force enhances the entropy generation rate. Also,
entropy analysis of MHD flows due to cylinder geometry can be found in [31-32]. An
interesting application was studied by Ramana Murthy and Srinivas [33] for the flow of two
immiscible micropolar fluids with thermal radiation effects. Also, the analysis of entropy
generation has been addressed in their study. For both MHD and radiation effects Guillermo
Ibafiez et al. [34] studied the entropy analysis for a nanofluid in a porous microchannel.
Similarly, a Casson fluid flow with MHD and/or radiation effects for different geometries is
given in [35-36]. Recently, Ahmed [37] studied the heat and mass transfer characteristics in
presence of radiation for a MHD fluid flow past a vertical porous plate. He also provided the
analytical solutions for the flow-field equations using transformation techniques. Further, the
radiative convection flow analysis of Casson fluid is shown in [38].

Based on the literature survey, it can be observed that very scant attention has been paid
to the transient hydromagnetic Casson fluid flow past a radiative vertical cylinder with entropy
heat generation. Hence, the specific aim of the present study is to investigate the second law of
thermodynamic for a Casson fluid flow over a uniformly heated vertical cylinder with thermal

radiation and MHD effects across the boundary layer region. A temperature at the wall is taken



to be greater than that of surrounding fluid temperature. The transitory effects of the
hydromagnetic Casson fluid flow with radiative entropy heat generation is studied for the
momentum and heat transport coefficients for different control parameters and compared with
the Newtonian fluid flow. The results obtained by implicit finite difference method are
corroborated with the available existing results in the literature.

The organization of this research article is arranged in the following ways: Section 2
deals with the mathematical formulation and its non-dimensionalization for a Casson fluid flow
over a semi-infinite vertical cylinder with thermal radiation and MHD effects. Also, average
momentum and heat transport coefficients, entropy heat generation and Bejan number details
are given. Section 3 dealt with the grid generation and numerical method to solve the flow-
field equations. In the results and discussion section 4, the transient two-dimensional flow-field
profiles, average wall and heat transfer rates are analysed in addition to entropy heat generation
analysis and Bejan number. Also, the comparison between the flow due to the Casson and
Newtonian fluids are shown and analysed. Finally, the concluding remarks are made in Section
5.

2.  Mathematical modelling

Transient two-dimensional laminar buoyancy driven Casson fluid flow past a radiative
vertical cylinder of radius ry with transversely applied magnetic field B, as shown in Fig. 1.
The rectangular coordinate system is chosen wherein the axial coordinate (x-axis) is selected
from the foremost verge of the cylinder and the radial coordinate (r-axis) is considered as
normal to the x-axis. It is assumed that the neighboring fluid temperature is stationary and
similar to that of free stream temperature T',. At the outset, i.e. t" = 0, the temperature T, is
uniform for the cylinder and surrounding fluid. Later (t' > 0), the temperature of the vertical

cylinder is augmented to T',,(> T',,) and preserved uniformly there afterward. The influence



of viscous dissipation is assumed to be insignificant in the thermal equation, because the
magnitude of velocity is expected to be minuscule in the flow regime.

Under the aforesaid assumptions, the incompressible Casson fluid is modelled by the
following constitutive equations:
Law of conservation of mass:

d(ru) |, d(rv) _
dx + ar =0 (1)

Law of conservation of momentum:
p[%+(U.V)U]:—pg—Vp+,u(1+%)V2U+(]XB) )
where, J and B are given by Ohm’s law and Maxwell’s equations, namely,
VXE=0,VxH=4nJ, VXxB=0, J=0o[E+ UXB]

Here, J - current density, E - electric field, H - magnetic field, B - magnetic flux, U - velocity
vector and o - the electrical conductivity of the fluid.

The considered plate is under the effect of a transverse magnetic field with a uniform
strength, By, as shown in Fig. 1. It is presumed that the magnetic Reynolds number is very
small. Therefore, the interaction of the induced axial magnetic field with the motion of
electrically-conducting couple stress fluid flow is expected to be minuscule compared to the
interaction of the applied magnetic field. It is noted that further no external electric field is
applied. With these assumptions, the magnetic field ] X B of the body force term in momentum
Eq. (2) reduces to —oB3u, where By, is the intensity of the forced transverse magnetic field.

Using Boussinesq’s approximation the above Eq. (2) can be rewritten as

9%u . 10u

p(a—u+u3—z+ v';—:) = u(l +%) (ﬁ-l___) + pgBr(T' —Ts,) — oBiu (3)

at’ r or
where B = pp+/2m./p, 1is the Casson fluid parameter.

The rheological model of an incompressible flow of a Casson fluid can be written as

follows (Casson [39]; Hakeem et al. [40]):



. { Z(uB + py/m)eij, > T, @

2(ug + py/\/z_n:c)eij' T <T,
where, 7;; and e;; represents the (Z, /)™ component of the shear stress tensor and deformation
rate respectively. p,, is the yield stress of the fluid and (= e;;e;;) denotes product of the
component of deformation rate with itself, . denotes a critical value of this product based on
the non-Newtonian model and pjp is plastic dynamic viscosity of the non-Newtonian fluid. So,
if a shear stress is less than the yield stress applied to the fluid, it acts like a solid, whereas if a
shear stress is exceeding the applied yield stress, it starts to move.

Law of conservation of Energy:

aT’ ar’ aT'"  a d aT’ du
Srtusvi =t (rSh) cp(l + s) (ar)

= (rq,) )

pc ar

Based on the Rosseland approximation (Brewster [41]), the radiative heat flux g, is given by

9r = ~ 3= o (6)
where o is the Stefan-Boltzmann constant and x* is the mean absorption coefficient. The
temperature differences within the flow are considered to be sufficiently small that T'* may be

expressed as a linear function of the temperature. Expanding T'* using the Taylor series and
neglecting the higher order terms yields

T'* = 4T.°T" - 3T.* (7)
In view of Egs. (6) and (7), Eq. (5) reduces to

aT’ T’ aT ad oT' ou 166*TL° \1 @ aT’

s tus i =t (r )+ cp(“ﬁ)(ar) +(3pc,,,(* ):a(r?) (®)

The resultant initial and boundary conditions are given by

t'<0T'=T,,u=0v=0 V x and r
t'>0:T'=T,,u=0,v=0 at r = 1,

T"=To,u=0,v=0 at x =0 9)



T"->TL,,u—>0v—0 as r - o«

Initiating the subsequent non-dimensional quantities

_1 Ur VT vt! _1x v T'-T4 rS (T} -Ta
U=Gri¥e y= p = yogrlX pr=2 g=lTo g 9frm(li-Te)
T,

I ) 2 >
v v 0 To a Tw—Teo v

2 2.2 2 *
R=—=, Br= ——— M = 2k Eozv—z, N=2E (10)

3
To k(T —=Te)1E ’ pv ’ cp(T‘;,—To'o)ro 46*T2

(for the above symbols refer nomenclature) in the Egs. (1), (3), (8) and (9), they reduce to

subsequent form

irZeI=p (11)

X OR R

PruSv =0+ (1+3) (Sm+at) - MU (12)
w5 G as) + (e e (5) (13)
t<0:6=0,U=0,V =0, Vv Xand R
t>0:0=1,U=0,V=0 at R=1

6=0U=0V=0 at X =0

0-0U-0V->0 as R - oo (14)

2.1.  Friction and heat transport coefficients
The momentum and heat transport coefficients are significant parameters in the heat
transfer studies due to their direct involvement in the convection. In the present study, the non-

dimensional average momentum and heat transport coefficients are defined as

G =(1+ %) I (Z_Z)R=1 dx (15)
Nu=-[ (%)R=1 dx (16)

The above coefficients are calculated using the five-point approximation and Newton—
Cotes quadrature formula.

2.2.  Entropy heat generation analysis and Bejan number
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The entropy generation for radiative magnetohydrodynamic Casson fluid per unit

volume with constant density is given by

s =)+ (1)) 4 (D) @

2
Too

Using Egs. (6) and (7), Eq. (17) reduces to

, N2
_ k (oTs 2 u 1\ [ou)?2 oB2u? 1 160'*7"03 oT
Sgen—ﬁ(a) (145 (5) + 5 -\ )\ (18)

[o¢]

The equation (18) can be rewritten as

Sgen251+52 +S3+S4_

! 2 . .
where S; [: k (ai) ] signifies the entropy generation due to the heat flow, S, =

T2 \or

ou\? : : C
[TL, (1 + %) (ﬁ) ] denotes the entropy generation due to the viscous dissipation for a constant
0

2.,27
density, S;|= ZB% | denotes the entropy generation due to the MHD and S,|=
y

= To’o

1 (16073 (o7 )| : .
T_< 361(* ) (ﬁ) denotes the entropy generation due to the thermal radiation.

The non-dimensional entropy heat generation parameter Ns is defined as the ratio of

the volumetric entropy heat generation rate to the characteristic entropy heat generation rate.

Accordingly, the entropy heat generation parameter is written as [42]:

_ 4 (06\? | Br(Gr)? 1\ (3U\? | Br(Gr)? 4,110
Ns=(1+53) (5) +Ze(1+3) Ga) +=e—Mu (19)
Il I _ml N2
where 0 = (TWT—,P”) is the non-dimensional temperature difference and % is the
S o To

characteristic entropy heat generation.
The Eq. (19) can be rewritten in the following form

NS = N1+N2+N3 (20)



where N; = (1 + ) (%) , N, = Br(gﬂz (1 + B) (Z—Z) and N3 = BT(GT} MU? designate the

irreversibility owing to thermal radiative heat transfer, fluid friction (viscous dissipation) and
entropy generation due to the magnetic field, respectively.

To assess the irreversibility distribution, the parameter Be (Bejan number) is defined as
the ratio of entropy heat generation due to heat transfer to the overall entropy heat production
and can be expressed as:

Ny

Be = — M (21)

Ni+Ny+Nj

From the Eq. (21), it is understood that the Bejan number lies between O to 1 i.e. 0 <
Be < 1. Consequently, Be = 0 reveals that the parameters N, and N; dominates the
parameter N;, whereas Be = 1 indicates that the parameter N; dominates the parameters N,
and Nj3. It is obvious that at Be = 0.5, the contribution of fluid friction and magnetic field in
the entropy generation production is equal to irreversibility due to the heat transfer i.e. N, +
N; = N;.
3. Finite difference solution procedure

To elucidate the above governing time-dependent mathematical Eqs. (11) - (13) an
unconditionally stable finite difference iteration scheme such as Crank-Nicolson type is
employed. The finite difference equations to the above Eqs. (11), (12) and (13) are as follows:

pnrti_pgnti gn _pgn ynRti_pntl Lpn _n
Im l-1,m Im—YIl— 1m+ Im Im—1TVIm™Vim— 1+UR)Vn+1 _0 (22)

2AX 2AR

Ul Lo Ulm Ulm n+1 _ n+1 n n+1l _ n+1 n n
(U l 1,m + Ul,m Ul lm) 4-AR (U lm—l + Ul,m - Ul,m—l)

ZAX
+1 +1
_ 01m +61m +JR (1 +1) Ulms1=Ulme1+Ulms1=Ulm—1 +
2 B 4(AR)
+1 +1 +1 +1, yntl

(1 +1) Ulnm+1_2U11:Lm +Ulnm 1+Ulm+1 2Ulm"'Ulm 1 —MM (23)

B 2(AR)? 2

9n+1 Gn Ul +1 _ +1 Vl +1 _ +1
m (Qn on n n m (Qn on n n
a0 = 0 + 07 — 071 ) + 522 (00" — O + O — 011
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+1 +1 +1 +1 +1
_ (1 + i) {I:e?m+1_29?m +9?m—1+9?m+1_29?m+9?m—1] + UR) [9?m+1_9?m—1+9?m+1_9?m—1] }
3N

2Pr(AR)2 4Pr(AR)
1 2 UZITTLL—U%lﬁUZTmH—UZ}mﬂ Uz,lm+1_U17,1m—1
+(1 + B) (Gr)%e, ( 2(R) ( 2(R) ) (24)
here JR = ————
where T [1+(m-1)AR]

The results of these finite difference equations obtained in the rectangular grid with X,,,,,, = 1,
Xmin =0, Rpax = 20 and R,,;, = 1 where R, relates to R = oo which lies far away from

the heat and momentum transport boundary layers.
3.1 Validation of the numerical code using grid independence study

To have an economical consistent grid scheme for the reckonings, a grid independency
test has been conducted using four different grid sizes of 25 x 125, 50 x 250, 100 x 500 and
200 x 1000. The values of the average skin-friction coefficient (Ef) and Nusselt number ( Nu)
on the boundary R = 1 for the aforesaid grid sizes are shown in Table 1. It is evident that the

values estimated for the grid size of 100 x 500 differ in the fourth decimal place with the grid
size of 25 x 125 and 50 x 250 while 200 % 1000 does not have significant effect on the results
of Ef and Nu. Hence, according to this observation, a uniform grid size of 100 x 500 was
selected for all subsequent simulation with the mesh sizes of 0.01 and 0.03 along the axial and
radial directions, respectively. Similarly, to produce a reliable result with respect to time, a grid
independent tests have been done for different time step sizes as shown in Table 2, where the
time step size At (t = nAt,n =0,1,2,...) fixed as 0.01.

The finite difference procedure begins by computing the thermal Eq. (13), which gives
the temperature field. Then, solving the momentum transport and conservation of mass
equations (12) and (11) provide the solution of the velocity field. Eqs. (23) - (24) at the (n+1)®
iteration using the known n' iteration values are specified in the following tridiagonal form:

n+1 n+1 n+l __ n
al,mcbl,m—l + bl,mcbl,m + Cl,mcbl,m+1 - dl,m
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where @ denotes the time-dependent flow field variables 0 and U. Therefore, Eqgs. (23) - (24)
on a particular /-level at every internal nodal point comprise a system of tridiagonal equations.

The detailed description of this finite difference scheme can be found in [43-47].

4, Results and discussion

To study the unsteady behaviour of the virtual flow-field variables, such as temperature
and velocity, their values are illustrated at one position, which are neighbouring to the hot
cylindrical wall. The time-independent state temperature and velocity profiles are presented
along the radial coordinate at X=1.0.

In order to validate the present numerical results, in Fig. 2 the flow-field variables of
Newtonian fluids are compared with the results of Lee et al. [2] for Pr=0.7,3 = 00, = M =
N = 0.0. The outcomes are found to be in good covenant. It is evident that the present results
make a good agreement with the results of Lee et al. [2]. These results confirm the validity and
accurateness of the current numerical scheme. It is noted that no experimental works are
available till date to the best of the authors’ knowledge, so, the comparison between the present
study and experimental work could not be possible. The simulated results are represented to
describe the variation of the dimensionless flow variables, entropy generation number (Ns) and
Bejan number (Be) which are examined along with average skin-friction and heat transport
coefficients for different flow control parameters arise in this problem. Such variations are
plotted and conferred in the following paragraphs.

The influences of dimensionless flow parameters on the velocity constituents are
discussed and analysed in Fig. 3. The unsteady velocity (U) against time (7) at (1, 4.03) location
for distinct values of Casson fluid parameter () and viscous dissipation parameter (gy) is
graphically presented in Fig. 3a. Here, the position (1, 4.03) has been chosen to be the location
of highest velocity based on the time-independent velocity profiles shown in Figs. 4a & 4b.

Figs. 3a and 3b depicts that the variation of B & €, and M & N, respectively. From Figs. 3a and

12



3b, for all values of control parameters, excluding M, the velocity enhances with time, attains
the temporal peak, then marginally decreases and finally leads to the time-independent state.
From Fig. 3a it is seen that the transient U profile increases with the increasing values of 3 or
€0 at the neighbourhood of the cylinder wall. The incentive behind this increment is that
increasing 3 values decreases the size of the velocity diffusion term in Eq. (12) and thus,
there is a lesser amount of resistance to the fluid flow in the province of the temporal peak of
velocity. From Fig. 3a it is perceived that when 7 << 1.3, the conduction dominates the heat
transfer. Subsequently, there occurs a time stage where the heat transfer rate is influenced by
the effect of natural convection of Casson fluid with raising upward velocities with respect to
time. Later, before attaining the steady-state, the velocities get overshoot. As illustrated in
Fig. 3a it is observed that initially transient velocity profiles concurred with each other and
then diverge after some time. Also from Fig. 3a it is noticed that as 3 upsurges the time to
accomplish the steady-state increases and reverse trend is noticed for €,. From Fig. 3a it is
noticed that as 3 or €, increases, the time to accomplish the temporal peak decreases. Fig. 3b
shows the similar transient features as shown in Fig. 3a, but initially the U curves for all
values of B & €, coincided with each other and diverges after some time. In the Fig. 3b it is
perceived that as M or N upsurges, the velocity decreases, since a higher M value means a
higher force resisting the flow and a higher N value allows higher thermal transport across the
boundary. Similarly, the velocity at other locations also exhibits somewhat similar transient
behaviour. From Fig. 3b it is noticed that as M or N upsurges the time to accomplish the
steady-state increases. The same observation is tabulated in Table 3.

Figs. 4a and 4b elucidate the time independent-state U profiles for the variation of 3
& €5 and M & N against R respectively. It can be observed that the U profile in these figures
start with the no-slip boundary condition, reaches its peak and then shrink to zero along the R
coordinate satisfying the far-away boundary conditions. Also, in the neighbourhood of the

hot
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cylindrical wall, it is noted that the magnitude of non-dimensional axial velocity (U) is
suddenly amplifying as R rises from Rmin (=1). In Fig. 4a the time-independent U curves in the
region near to the wall, i.e., 1.0<R<S5.71 has increased trend for increasing values of 3 and
opposite trend is noted in the region far from the hot wall (i.e., R > 5.71), i.e., in the zone which
is away from the hot wall, the peak value of velocity moves towards with augmented velocity
boundary layer thickness. This is because augmenting the values of [ leads to the decrease of
the total viscosity in Casson fluid flow, thus increasing the peak fluid velocity. Also, the
velocity curves increase as €, increases. From Fig. 4b it is noticed that the magnitude of the
time-independent velocity curves decreases as M amplifies. This implies that magnetic field
suppresses fluid velocity. This is due to the fact that the application of the magnetic field of an
electrically conducting fluid gives rise to resistive force which is known as Lorentz force. Also,
the boundary layer thickness increases with increasing value of the magnetic parameter. Here,

the effect of NV on the velocity profile can be considered. In a typical natural convection without

-y 220 20 . .. . .
radiative effect, the thermal term (ﬁ + %5) makes the convective term positive owing to its

own positive value. With the radiative effect in the present problem a higher value N yields a
smaller convective term, resulting in a profile of low temperature at X = 1.0 (see Fig. 5) and,
therefore, yielding a lower velocity.

Figs. Sa-b depicts the variation of & €, and M & N on unsteady temperature profile
(0) against the time (7) at the location (1, 1.34), respectively. From these figures it is clear that
the unsteady temperature profile is increasing with time, reaches the peak value, then decreases
and again slightly increases, and finally reached the time-independent state asymptotically. It
is worth to note that this transient phenomenon of the temperature is also evident at other
locations. During the early period, the nature of the time-dependent temperature profiles is
mainly noticeable. From Fig. 5a it is noticed that for different values of B or g, the time-

dependent temperature profiles firstly overlap with each other and then differ after a time. Also,
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it is noted that the time to attain the temporal peak decreases as 3 or €, amplifies for all transient
0 curves (see Fig. 5a) and reverse trend holds true for Fig. 5b. From Fig. 5a, it is observed that
the 0 profile decreases with increasing the value of [ and reverse trend is noted for g,.
Similarly, the 6 profile is rapidly increasing as M increases and opposite behaviours also
noticed for N (Fig. 5b).

Fig. 6a-b presents the steady-state non-dimensional 6 profiles as a function of radial
coordinate for various values of B & €, and M & N against R, respectively. These patterns begin
with the boundary value of 0 = 1 and then reduce to zero. It is observed that an upsurge in €,
results upsurge in the 0 profile and reverse trend is noted for § (Fig. 6a). Similar trends are
observed for M and N (Fig. 6b), respectively. The phenomenon that the temperature decreases
with an increase in the N value is explained before. As the value of N increases from 0.2 to 0.5
with fixed M (= 1.0), the temperature decreases markedly. As a result, the thermal boundary
layer thickness is decreased due to a rise in N values. Smaller M and larger N values give rise
to the thinner thermal boundary layer, since a smaller M value implies less-suppressed
boundary layer flow, and a larger N value means smaller thermal convection.

Figs. 7-8 illustrates the average skin-friction and heat transport coefficients as a function

of time (7) for various parametric values such as § & €, and M & N, respectively. In Fig. 7a, at
first the Tf increases with 7, and after a certain lapse of time, they become independent of time

throughout the transient period. This is true since the buoyancy-induced flow-field velocity is

comparatively small at initial time-dependent period, as perceived in Fig. 3, and the average
momentum transport coefficient remains small, as observed in Fig. 7. Also, it is seen that Tf
amplifies with augmenting the values of g, and reverse trend is noted for 3. Also, increasing

the values of 3 the Ef decreases. This is true since as B increases the velocity increases (Refer

Fig. 4) and the term (1 + %) decreases, which give the decreased velocity gradient and causes

15



decrease in Ef (Refer Eq. (15)). Also, from Fig. 7a it is noticed that Tf upsurges as €, upsurges.

Fig. 7b demonstrates that rising values of M and N give the decreasing value in Tf and this is
in line with the time-dependent velocity profile mentioned in Fig. 3.

Figs. 8a and 8b illustrate that, in the beginning time, Nu decreases drastically, then

slightly increasing and again reach the time independent-state. Also, it is noted that initially the

Nu curves coincided with each other and diverged after some time. More clearly, these figures

show that in the starting time the heat conduction only occurs, and are more dominant than the

convection. Here it is perceived that Nu decreases with augmenting values of €, and reverse

trend is noted for 3 as shown in Fig. 8a. This is same as reflected in reverse trend in the transient

temperature profile shown in Fig. 5, since Nu gives the negative temperature gradient values
on the hot wall (Refer Eq. 16). From Fig. 8b it is observed that as the M increases, the effect of
the Lorentz force on the flow field decreases, and hence the flow velocity increases in the
boundary layer region. This is associated with higher temperature gradients at the walls,
resulting in higher heat transfer rates. It is observed that at short times after 7 = 0, the average
Nusselt numbers are almost the same for the various parameters which indicate that initially
there is only heat conduction. Increasing N speeds up the spatial decay of the temperature field
near the heated surface, yielding an increase in the rate of heat transfer.

The influence of the different flow-field parameters upon entropy generation (Ns)
versus time (7) at the location (1, 2.10) is presented in Figs. 9a-c. The variation of Casson fluid
parameter (3) & viscous dissipation parameter (€,), magnetic parameter (M) & radiation
parameter (N) and group parameter (Br®~1) & Grashof number (Gr) on transient Ns are
depicted in Figs. 9a — 9c¢, respectively. From these plots, it is ascertained that, initially, the Ns
curves increase radically, then decreases, again upsurges, reach a temporal peak, and finally
become independent of time. The important observation noted here is that in the beginning of

time all the Ns curves concurred with each other and splits after some time for all values of
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control parameters. This indicates that at initial time levels (i.e., 7 < 0.25) the conduction is
more dominated than the heat transfer. After some time, there occurs a stage when the rate of
heat transfer is swayed by the influence of free convection with rising entropy production
upward with time. As soon as this transient period has nearly completed and just before
reaching the time-independent state, there occur overshoots of the entropy profile. From Figs.
9a and 9c, it is noted that the Ns increases with increasing B or €, or Br@~lor Gr, respectively.
Also, in Fig. 9b it is perceived that as M or N increases the transient entropy heat generation
number decreases. From the Figs. 9a and 9b, it is understood that the time to achieve temporal
peak is same for all increasing values of 3 or €y or M. Similarly, in the Figs. 9b and 9c, the time
to attain temporal peak increases as N increases and decreases as BrO~! or Gr increases. In the
Fig. 9c, it is ascertained that, initially, the Ns curves increases radically, then decreases, again
upsurges, reach a temporal peak, and finally become independent of time. It is worth to
mention that in the beginning of time all the Ns curves concurred with each other and splits
after some time for all values of control parameters. The time taken to attain the temporal peak
slightly decreases as Br®~! or Gr increases. Thus, amplifying values of Grashof number
results in more entropy production.

The simulated time-independent dimensionless Ns profile for different control parameters
such as B & €9, M & N and BrO®~! & Gr along the radial direction at X = 1.0 are revealed in
Figs. 10a-c, respectively. It is remarked that as the radial position increases, the Ns curves
drastically increases and achieves the peak value, then suddenly decreases and reaches
monotonically to zero. Here it can be noted that the Ns curves are sharpened at peak value in
the neighbourhood of the hot cylindrical wall. However, the velocity curves get smooth at peak
value which is shown in the Figs 4a and 4b. Also, it is identified that the entropy production
gets thinner boundary layer for all values of control parameters. This is as a result of higher

entropy production is observed adjacent to the hot wall which yields thinner boundary layer.
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From Fig. 10a, it is perceived that for augmenting the values of 3, the steady-state Ns curves
increase in the interval R € [1, 1.45] then decreases when R > 1.45 and for augmenting values
of g,, the steady-state Ns curves decrease (i.e., in the interval R € [1, 1.6]), then increases
when R > 1.6. This is because of a reduction in the heat transport coefficient near to the
tropical region causes decrease in Ns (Refer Fig. 8a). From Fig. 10b, the entropy profiles are
noticed to be decreasing with increase value of M or N. It is observed that as M or N upsurges
the entropy curves coincided with each other having a slight variation as R amplifies from
Rmin=1. From Figs 10a and 10b, it is identified that the time taken to achieve the steady-state
decreases as €, upsurges, and for the  or M or N this trend is reversed. Fig. 10c reveal that in
the neighbourhood of a hot cylindrical wall, the entropy increases rapidly, then decrease
drastically, and approach to zero along the radial coordinate. It is also noted that for
augmenting values of Br@®~! or Gr, the Ns curves increases (Fig. 10c). This is because the
entropy production due to the fluid friction increases for larger values of Grashof number or
group parameter. Also, it is mentioned that the time needed to attain steady-state rises for
rising values of Br®~! or Gr (see, Fig. 10c).

The influence of the different flow-field parameters upon Bejan number (Be) versus
time (7) at the location (1, 2.10) are presented in Figs. 11a-c. The variation of Casson fluid
parameter (f3), viscous dissipation parameter (g,), magnatic parameter (M), Radiation
parameter (N), group parameter (Br@®~') and Grashof number (Gr) on a transient (Be) are
depicted in Figs. 11a — 11c, respectively. These data show that initially Be start with zero
value, increases drastically with time and attains the peak value, then drops marginally, and
finally becomes independent of time after slight fluctuation. From Fig. 11a, it is seen that as 3
or g, amplifies the Bejan number upsurges. From Fig. 11b it is viewed that increasing M or N
gives the decreasing values in Be. The important observation in these Figs. 11a and 11b is that
the time taken to reach temporal peak upsurges as €, or M increases and reverse trend is

noticed
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for B or N. From the Figs. 1lc, it is clear that, as BrO®~! or Gr rises, the Bejan number
upsurges. Here, the notable remark in these figures is the time to attain temporal peak, and
time-independent state is almost similar as Gr or Br®~! upsurges.

Fig. 12 demonstrates the time-independent state Be against the radial direction at X =
1.0 for various parameter values. The effects of B & €,, M & N and BrO®~! & Gr on Be along
the radial direction at X = 1.0 are shown in Figs. 12a-c, respectively. Here in all these figures,
the steady-state characteristics of Bejan number are almost similar to time-independent state
entropy generation (Ns) which is shown in the Figs. 10a — 10c. From Fig. 12a as  or g,
increases it is seen that the steady-state Be increased in the interval R € (1, 5.6), decreases in
the interval R > 5.6. Similarly, in the Figs. 12b and 12c, it is noted that for augmenting values
of M or N and BrO®~! or Gr, the Be curves increases. From Figs. 10 and 12, it is clearly
evident the steady-state entropy production is more than the Bejan number near the wall. This
confirms that smaller Be yields an increase in N>, i.e., N; < N> (Refer equation (21)) and thus
irreversibility due to heat transfer is dominated by fluid friction which gives more entropy
production in the vicinity of the plate.

Figs. 13a-c represents the entropy lines for different values of B, €, M, N, BrO~! and
Gr. In Fig. 13a, the variation of B is shown between (1) and (i1); & €, between (i1) and (ii1).
Similarly, in Fig. 13b, the variation of the M is shown between (1) and (i1); & N between (ii)
and (iii). Also in Fig. 13c, the variation of BrO~! is shown between (i) and (ii); & Gr
between
(11) and (ii1). Few important observations are noted here from all these figures. The variation of
entropy lines occurs very close to the hot cylinder wall for increasing the values of f3, €y, M,
N, BrO~! and Gr. From Figs. 13a and 13c [(i), (i) and (iii)] it can be observed that, the
entropy lines moving away from the hot wall as B, €5, M, N, BrO~1 and Gr increases.
Similarly, in Fig. 13b [(i), (i1)) & (ii1)], the entropy lines becoming close to the hot wall as M

or N increases. The 19



entropy production occurs in the neighbourhood of the hot cylinder wall for all values of 3, €,
M, N, BrO~! and Gr.

In the same way, the Bejan lines for different values of control parameters are shown
in Figs. 14a — l4c. For all values of B, €5, M, N, BrO~! and Gr, it is observed that the
variation of Bejan lines occur in the proximity of the hot cylindrical wall only. From Fig. 14a
it is seen that, the Bejan lines are becoming closer to the hot wall as 3 increases and reverse
trend is noticed for €,. Also, in Figs. 14b and 14c¢ the Bejan lines becoming close to the hot
wall as M or N or BrO~! or Gr increases. Hence, the Bejan production occurs in the
neighbourhood of the hot cylinder wall only.

Tables 3a-b tabulates the differences between Casson and Newtonian fluid flows for the
flow-field variables with their temporal peak and the time-independent state values for f3, €,
M, N, Br®~! and Gr, respectively. For a Casson fluid, all flow control parameters except
magnetic parameter, the time required to attain the temporal peak is higher than the usual
Newtonian fluid. Similarly, the steady-state time of Newtonian fluid for U, 0, Ns and Be is
more compared to the Casson fluid. Also, the peak velocity values occur at X = 1.0 for all
control parameters and these values of Casson fluid are smaller compared with those of
Newtonian fluid.

Tables 4a-b summarized the average momentum and heat transport coefficients of Casson
fluid and Newtonian fluid for various non-dimensional parameters, respectively. From Tables
4a and 4b, it is observed that the values of the skin-friction coefficient of Casson fluid are
larger compared to the Newtonian fluid while the opposite trend is evident in average Nusselt
number. Hence, the characteristics of average momentum and heat transport coefficients of
Casson fluid significantly vary from that of the Newtonian fluid.

Figs. 15a and 15b illustrate the U and 0 contours for Casson and Newtonian fluid flows,

respectively. At any given point of location in 2D-rectangular region, i.e. 0 < X <1.0,1 <
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R < 4.05, the velocity of the Casson fluid flow is observed to be smaller than the Newtonian
fluid flow. While the reverse trend is noticed for the temperature filed at any location in the (X,
R) coordinate system except the boundary points (X =0, R = 1 & R = 20). Also, the time-
independent state velocity and temperature contours for a Casson fluid are slightly different

from the denser momentum and thermal boundary layers of Newtonian fluids, respectively.
5. Concluding remarks

The distribution of entropy generation due to the thermal radiative heat transfer for
time-dependent flow of a hydromagnetic Casson fluid past a uniformly heated vertical cylinder
has been studied numerically. The Crank-Nicolson technique is applied to elucidate the
governing flow-field mathematical equations. The entropy generation and Bejan numbers for
thermal radiation, including the effects of MHD are derived and evaluated with the help of flow
variables. The influences of average values of momentum and heat transport coefficients,
entropy generation and Bejan number, as well as the steady-state flow variables are discussed
in detail. In the present study, the effect of the Casson fluid parameter, viscous dissipation
parameter, magnetic parameter, radiation parameter, group parameter and the Grashof number
on entropy generation and Bejan numbers are demonstrated and analysed. Few important
conclusions are listed below:

1. The time to accomplish the steady-state for U, 0, Ns and Be amplifies as § or M or N or

BrO~1 or Gr upsurges and the reverse trend is observed for €.
2. The velocity increases and temperature decrease with rising the values of 3. Also, the C_f

decreases with augmenting values of B. Similarly, the Nu increases with increasing values
of B.
3. Entropy heat generation parameter and Bejan number increases for increasing values of 3

or €y or Br@~1 or Gr and the reverse trend is seen for M or N.
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4. The time to attain the temporal peak for Ns is same as 3 or g, rises. Also, it decreases for
increasing values of BrO~! and Gr.

5. The transient and steady-state results of flow variables, average heat and momentum
transport coefficients, entropy production, Bejan number for non-Newtonian Casson fluid

differs with the Newtonian fluids.

Nomenclature

Be dimensionless Bejan number

B, applied magnetic field (kg. s2. A™)

Br Brinkman number

B magnetic flux (Wb)

specific heat at constant pressure (J kg'. K)

E electric field (V. m™)

Cr dimensionless average momentum transport coefficient
g acceleration due to gravity (m.s?)
Gr Grashof number

H magnetic field (kg. s2. A™)
J current density (A.m)
k thermal conductivity (kg-m-s>-K1)

magnetic parameter

N radiation parameter

Ns dimensionless entropy heat generation number
Nu dimensionless average heat transport coefficient
Pr Prandtl number

p fluid pressure (kg.m™. s%)
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q, radiative heat flux (kg. s)

U velocity vector (m.s™)

T, radius of the cylinder (m)

t' time (s)

t dimensionless time

T' temperature (K)

Ty shear stress tensor (kg.m™. s?)
X axial coordinate (m)

r radial coordinate (m)

u, v velocity components in (x, 7) coordinate system (m.s™)
X dimensionless axial coordinate
R dimensionless radial coordinate

U V  dimensionless velocity components in X, R directions, respectively
Greek letters
0 dimensionless temperature
a thermal diffusivity (m?-s ™)
B Casson fluid parameter
€  viscous dissipation parameter
Br  volumetric coefficient of thermal expansion (K™)
o electrical conductivity of the fluid (kg!. m3. s’. A%)
x*  mean absorption coefficient (kg''.m>. s*. W)
o*  Stefan-Boltzmann constant (W.m2. K*)
p density (kg-m)
v kinematic viscosity (m2. s™)

I viscosity of the fluid (kg.m. s1)
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0 dimensionless temperature difference
Br®~1 dimensionless group parameter
Subscripts

w wall conditions

I,m  grid levels in (X, R) coordinate system
0 ambient conditions

Superscript

n time level
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Table 1. Grid independence test for selecting mesh size.

Grid size Average skin-friction coefficient Average Nusselt number ( Nu)
(Cr) for g=1,Pr=071,M=1.0, |for g,=1,Pr=071,M=1.0,N
N=10and 3 =1.0. =1.0and B =1.0.
25 x 125 1.0450330 0.5626012
50 x 250 1.0457040 0.5651330
100 x 500 1.0462850 0.5675192
200 x 1000 1.0462980 0.5675245

Table 2. Grid independence test for selecting time step size.

Timg Average skin-friction coefficient ( Ef) Average Nusselt number ( Nu) for €,
Step S1ze | for g, =1, Pr=0.71, M=1.0,N=1.0 | =1,Pr=0.71,M=1.0, N=1.0 and B
(At) | and p=1.0. = 1.0.
0.5 1.0462930 0.5675144
0.1 1.0463240 0.5674965
0.08 1.0463300 0.5674935
0.05 1.0463140 0.5675022
0.02 1.0463010 0.5675095
0.01 1.0462850 0.5675192
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Table 3. The time required for various variables U, 6, Ns & Be to attain the temporal peak and
the time-independent state; the peak velocity for various B, €y, M, N, €,071 and Gr with Pr =

0.71 for (a) Casson fluid; & (b) Newtonian fluid.

B €9 Temporal peak time (¢) of Steady-state Peak value at X=1.0
(M=N=Gr=1.0) U1, 4.03) 0(1. 134) Ns(1.2.10) Bel, 210y | O€ Y v Ns Be
(a) Casson fluid
02 1.0 8.34 8.08 0.38 22.70 0.2203 0.4052
0.5 1.0 7.07 6.76 0.38 23.20 0.2811 04534
1.0 1.0 6.53 6.16 0.38 23.68 0.3137 0.4816
1.0 25 6.41 6.14 0.38 23.35 0.3235 0.3130
1.0 45 6.26 6.09 0.38 22.92 0.3375 0.2452
02 10 8.32 11.39 0.0642
0.5 1.0 7.02 15.29 0.0669
1.0 10 6.44 18.49 0.0681
1.0 25 6.23 16.94 0.0718
1.0 45 6.35 18.72 0.0774
M N
(e9=Gr=1.0, B =)
1.0 0.2 5.33 5.13 0.13 10.67 13.35 0.3865 1.0917 0.0859
20 0.2 0.13 15.29 16.18 0.2558 0.9547 0.0479
30 0.2 0.13 19.59 19.59 0.1901 0.8820 0.0321
1.0 04 5.67 5.50 0.22 16.94 16.94 0.3528 0.7324 0.0776
1.0 0.5 5.77 5.73 0.25 18.72 18.72 0.3424 0.6535 0.0751
Bro~! Gr
(B=go=M=N=1.0)
03 1.0 6.98 23.68 0.6178
05 1.0 6.95 23.68 0.7540
1.0 1.0 6.87 23.68 1.0945
0.1 15 6.94 23.40 0.4246
0.1 25 6.58 2342 0.5192
Bro~! Gr
(B=go=M=N=1.0)
03 1.0 6.44 23.68 0.2043
05 1.0 6.44 23.68 0.3405
1.0 1.0 6.44 23.68 0.6810
0.1 15 6.36 23.40 0.1601
0.1 25 6.14 2342 0.5191
(b) Newtonian fluid
B €0
(M= N=Gr=1.0)
o 1.0 542 5.18 0.33 6.01 2430 0.3720 0.5282 0.0614
o 25 5.51 5.29 0.33 6.01 24.09 0.3798 0.3751 0.0662
o 45 5.55 5.34 0.33 6.01 23.82 0.3908 0.2944 0.0792
M N
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(B= o, £o=Gr=1.0)

1.0
2.0
3.0
1.0
1.0

0.2
0.2
0.2
04
0.5

4.80 4.65
5.05 4382
521 5.06

0.33
0.12
0.12
0.22
0.25

0.12
0.12
0.12
0.19
0.21

13.81
16.29
19.66
17.29
19.13

0.4444
0.2876
0.2105
0.4113
0.4010

1.1513
0.9819
0.8964
0.7860
0.7052

0.0835
0.0453
0.0299
0.0769
0.0749

Table 4. Comparison between (a) Casson fluid and (b) Newtonian fluid flows for various

values of 3, €9, M, N with respect to the average values of Ef and Nu with Pr=0.71 & Gr =

1.0.

B €o Cf Nu
(a) Casson fluid

0.2 1.0 1.6935 0.5186
0.5 1.0 1.2522 0.5499
1.0 1.0 1.0462 0.5675
1.0 2.5 1.0628 0.4921
1.0 4.5 1.0864 0.3826
M N

1.0 0.2 1.1922 04611
2.0 0.2 09514 0.4362
3.0 0.2 0.8067 0.4176
1.0 0.4 1.1257 0.5088
1.0 0.5 1.1049 0.5239

(b) Newtonian fluid

B €9

o0 1.0 0.7651 0.5956
o0 25 0.7732 0.5305
. 45 0.7846 0.4386
M N

1.0 0.2 0.8494 0.4741
2.0 0.2 0.6722 0.4450
3.0 0.2 0.5668 0.4239
1.0 04 0.8117 0.5279
1.0 0.5 0.7996 0.5452
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Fig. 3. Time-dependent velocity profile (U) versus time (7) at the location (1, 4.03) for

M=10,N=1.0, Gr =1.0, Pr=0.71
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Fig. 4. Simulated time-independent state velocity profile (U) versus R at X = 1.0 for the effect
of (a) B and €,; & (b) M and N.
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Fig. 6. Simulated time-independent state temperature profile (6) versus R at X = 1.0 for the
effect of (a) B and €,; & (b) M and N.
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Fig. 7. Average momentum transport coefficient (C_f) for the effect of (a) B and €,; & (b) M
and V.

38



- M=1.0, N=1.0,Gr = 1.0, Pr = 0.71
0.7
B B €y
= 0.2 1.0
- —_ — — — 05 1.0
— —_———— 1.0 1.0
BN i 1.0 2.5
B —————— — 1.0 45
0.6 |-
|3 il T T -0~
O e OO
F
.
N \
- \,
0.4 \
B N e e —————
B 1 1 1 1 l | | Il | l | | ] | l 1 1 Il | l 1 | Il Il l
0 5 10 15 20 25
(8a)
0.8 B=1.0,e, =1.0, Gr =1.0, Pr=0.71
1 M N
A 1.0 02
3 _ — — =20 0.2
0.7RH1% —_—————— 3.0 02
'.:‘ ................... 1.0 0-4
i ————- - 10 05
— i\
0.6 F
12 -
] N
- N
— N - - . _ o _ .
04
: | | | I | | | | I | | | | I | | | | | | | | l |
0 4 8 12 16 20
(8b)

Fig. 8. Average heat transport coefficient (Nu ) for the effect of (a) B and €,; & (b) M and N.
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Fig. 9. The transient entropy generation number (Ns) against time (¢) for the effect of (a) 3
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Fig. 10. The steady-state entropy generation number (Ns) against R at X = 1.0 for different

values of (a) B and €,; (b) M and N; & (¢)BrO~1! and Gr.
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Fig. 12. The steady-state Bejan number (Be) against R for the effect of (a) B & €, ; (b) M and
N; & (¢) Br®~1 and Gr.
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Fig. 14. Simulated steady-state Bejan lines (Be) in 2D coordinate system (X, R) for various
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Highlights

Hydromagnetic Casson fluid flow over a radiative cylinder has been studied.
Entropy and Bejan lines are discussed for different values of control parameters.
Average momentum and heat transport coefficients have been considered.
Entropy generation upsurges with Casson fluid parameter and Grashof number.

Flow-field profiles for Casson fluid differs with the Newtonian fluids.
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